4.7 Article

Cyclodextrin-enhanced solubilization of pentachlorophenol in water

Journal

JOURNAL OF ENVIRONMENTAL MANAGEMENT
Volume 71, Issue 1, Pages 1-8

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2004.01.001

Keywords

solubilization; pentachlorophenol; cyclodextrins; complexation; equilibrium constant

Ask authors/readers for more resources

The solubilization of pentachlorophenol (PCP) by beta-cyclodextrin (beta-CD) and three of its most used derivatives, methyl-beta-cyclodextrin (MCD), hydroxypropyl-beta-cyclodextrin (HPCD) and carboxymethyl-beta-cyclodextrin (CMCD), has been investigated. The formation of soluble inclusion complexes between PCP and cyclodextrin (CDs) increases the aqueous solubility of PCP. Due to the ionizable nature of PCP, the effects of pH and ionic strength on the equilibrium complexation were evaluated. All CDs were found to form 1:1 inclusion complexes. Equilibrium constants calculated from solubility enhancement experiments revealed that the stability of the complexes was dependent on the polarity of the compound, on the ionic strength and on the cyclodextrin type. In general, weaker equilibrium constants were observed for PCP with beta-CD than with MCD or CMCD. For all CDs, the complexation or the solubilization efficiency of PCP (weak acid) depended on pH and ionic strength. Moreover, we observed that the solubility of the beta-CD/PCP complex was lower than that of the beta-CD molecule and dependent on the ionic strength of the solution. Although the equilibrium constant of PCP/CD complex was found to be higher at pH 3 than at pH 7 in water, extraction of PCP from porous media by a CD solution at neutral pH would be achievable due to the higher PCP aqueous solubility in neutral/basic media. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available