4.7 Article

IL-13 and IL-1β promote lung fibroblast growth through coordinated up-regulation of PDGF-AA and PDGF-Rα

Journal

FASEB JOURNAL
Volume 18, Issue 7, Pages 1132-+

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.03-1492fje

Keywords

stromal cells; cytokines; cytokine receptors; cellular proliferation; lung

Ask authors/readers for more resources

Peribronchiolar fibrosis is a prominent feature of airway remodeling in asthma and involves fibroblast growth and collagen deposition. Interleukin-13 (IL-13), a T-helper 2 cytokine, is a key mediator of airway remodeling in asthma, yet the mechanism through which IL-13 promotes fibroblast growth has not been investigated. In this study, we show that IL-13 stimulates the mitogenesis of mouse, rat, and human lung fibroblasts through release of a soluble mitogen that we identified as PDGF-AA. The IL-13-induced growth of human lung fibroblasts was attenuated by an anti-PDGF-AA neutralizing antibody, and IL-13 stimulated human lung fibroblasts to secrete PDGF-AA. Fibroblasts derived from mouse embryos possessing the lethal Patch mutation, which lack the PDGF-Ralpha, showed no mitogenic response to IL-13. However, Patch cells did exhibit IL-13-induced STAT-6 phosphorylation. Stable transfection of the PDGF-Ralpha into Patch cells restored the growth response to PDGF-AA and IL-13. Through the use of lung fibroblasts from STAT-6-deficient mice, we showed that IL-13-induced PDGF-AA release is STAT-6 dependent, but PDGF-AA-induced growth is STAT-6 independent. Finally, we showed that IL-1beta enhanced IL-13-induced mitogenesis of rat lung fibroblasts through up-regulation of the PDGF-Ralpha. Our findings indicate that IL-13 acts in synergy with IL-1beta to stimulate growth by coordinately up-regulating PDGF-AA and the PDGF-Ralpha, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available