4.7 Article

Native chemical ligation of hydropobic peptides in lipid bilayer systems

Journal

BIOCONJUGATE CHEMISTRY
Volume 15, Issue 3, Pages 437-440

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bc049959s

Keywords

-

Ask authors/readers for more resources

The covalent modification of water-insoluble membrane polypeptides incorporated into lipid bilayers by native chemical ligation is described. The key feature of this strategy is the use of cubic lipidic phase (CLP) matrixes as reaction media. The CLP-matrix consists of a lipid bilayer into which hydrophobic polypeptides and folded membrane proteins can be inserted and two unbounded aqueous channels that give the aqueous phase access to both sides of an infinite lipid bilayer and thus ensure that modification of solvent-exposed sites is independent of the topology of membrane incorporation. The enzymatic removal of an N-terminal proteolytic cleavage sequence from the membrane polypeptide exposes an N-terminal cysteine residue. Subsequently, a C-terminal thioester peptide is joined to the N-terminus of the polypeptide by a native chemical ligation reaction. By use of this approach, incorporation of a variety of molecular tools, such as spectroscopic probes, unnatural amino acids, and molecular markers into membrane proteins that cannot be easily solubilized in detergent or denaturant solutions, may be achieved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available