4.7 Article

Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials

Journal

FOOD AND CHEMICAL TOXICOLOGY
Volume 42, Issue 5, Pages 817-824

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.fct.2004.01.004

Keywords

deoxynivalenol; nivalenol; zearalenone; activated carbon; mycotoxin detoxification

Ask authors/readers for more resources

In vitro screening of 14 adsorbent materials, including some commercial products used to detoxify Fusarium-mycotoxins, were tested in the pH range of 3-8 for deoxynivalenol (DON)- and nivalenol (NIV)-binding ability. Only activated carbon showed to be effective with binding capacities of 35.1 mumol and 8.8 mumol DON and NIV/g adsorbent, respectively, calculated from the adsorption isotherms. A dynamic laboratory model simulating the gastrointestinal (GI) tract of healthy pigs (TIM system) was used to evaluate the small-intestinal absorption of DON and NIV and the efficacy of activated carbon in reducing the relevant absorption. The in vitro intestinal absorptions of DON and NIV were 51% and 21%, respectively, as referred to 170 mug DON and 230 mug NIV ingested through contaminated (spiked) wheat. Most absorption occurred in the jejunal compartment for both mycotoxins. The inclusion of activated carbon produced a significant reduction in the intestinal mycotoxin absorption. At 2% inclusion level the absorption with respect to the intake was lowered from 51% to 28% for DON and from 21% to 12% for NIV. The binding activity of activated carbon for these trichothecenes was lower than that observed for zearalenone, a mycotoxin frequently co-occurring with them in naturally contaminated cereals. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available