4.7 Article

In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis

Journal

AQUATIC TOXICOLOGY
Volume 132, Issue -, Pages 9-18

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquatox.2013.01.014

Keywords

Nanoparticles; Marine bivalves; Biomarkers; Oxidative stress; Innate immunity; Gene expression

Funding

  1. Italian Ministry of Research
  2. Fondi Ateneo, University of Genoa

Ask authors/readers for more resources

Due to the increasing production of nanoparticles (NPs) and their potential release in the aquatic environment, evaluation of their biological impact on aquatic organisms represents a major concern. Suspension feeding invertebrates, in particular bivalve mollusks, may play a role in NP biotransformation and transfer through food webs and may represent a significant target for NP toxicity. In this work, the in vivo effects of titanium dioxide (n-TiO2), one of the most widespread NPs in use, were investigated in the bivalve Mytilus galloprovincialis, largely utilised as a sentinel for marine contamination. Mussels were exposed for 96 h to different concentrations of n-TiO2 suspensions (1, 10 and 100 mu g L-1) and multiple responses were evaluated in the digestive gland and immune cells, the haemocytes. In the digestive gland, n-TiO2 affected lysosomal and oxidative stress biomarkers and decreased transcription of antioxidant and immune-related genes. In the haemocytes, n-TiO2 decreased lysosomal membrane stability-LMS and phagocytosis, increased oxyradical production and transcription of antimicrobial peptides; moreover, pre-apoptotic processes were observed. The effects of n-TiO2 on digestive gland and haemocytes were distinct, also depending on the endpoint and on nominal NP concentrations, with many significant responses elicited by the lowest concentrations tested. The results show that n-TiO2, at concentrations close to predicted environmental levels, significantly affected different functional and molecular parameters of mussel digestive gland and immune cells. In particular, the observed changes in immune parameters that represent significant biomarkers of exposure at the organism level suggest that exposure to n-TiO2 may pose a serious risk to mussel health. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available