4.4 Review

Sphingolipid metabolism enzymes as targets for anticancer therapy

Journal

CURRENT DRUG TARGETS
Volume 5, Issue 4, Pages 375-382

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1389450043345452

Keywords

sphingolipid; ceramide; glucosylceramide; ceramide synthase; lactosylceramide; gangliosides; multidrug resistance; P-glycoprotein

Ask authors/readers for more resources

Treatment with anti-cancer agents in most cases ultimately results in apoptotic cell death of the target tumour cells. Unfortunately, tumour cells can develop multidrug resistance, e.g., by a reduced propensity to engage in apoptosis by which they become insensitive to multiple chemotherapeutics. Ceramide, the central molecule in cellular sphingolipid metabolism, has been recognized as an important mediator of apoptosis. Moreover, an increased cellular capacity for ceramide glycosylation has been identified as a novel multidrug resistance mechanism. Indeed, virtually all multidrug resistant cell types exhibit a deviating sphingolipid composition, most typically an increased level of glucosylceramide. Thus, the enzyme glucosylceramide synthase, which converts ceramide into glucosylceramide, has emerged as a potential target to increase apoptosis and decrease drug resistance of tumor cells. In addition, several other steps in the pathways of sphingolipid metabolism are altered in multidrug resistant cells, opening a perspective on additional sphingolipid metabolism enzymes as targets for anti-cancer therapy. In this article, we present an overview of the current understanding concerning drug resistance-related changes in sphingolipid metabolism and how interference with this metabolism can be exploited to over come multidrug resistance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available