4.7 Article

Non-steroidal anti-inflammatory drug (NSAID) ibuprofen distresses antioxidant defense system in mussel Mytilus galloprovincialis gills

Journal

AQUATIC TOXICOLOGY
Volume 105, Issue 3-4, Pages 264-269

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquatox.2011.06.015

Keywords

Ibuprofen; Oxidative stress; Biomarkers; Mussel; Antioxidant enzymes; Lipid peroxidation

Funding

  1. Portuguese Science and Technology Foundation (FCT) of the Ministry of Science and Technology of Portugal [SFRH/BD/41606/2007]
  2. Endocrinobiotox and Farmacotox of POCTEP-0042-RISE-5-E project
  3. Fundação para a Ciência e a Tecnologia [SFRH/BD/41606/2007] Funding Source: FCT

Ask authors/readers for more resources

Active pharmaceutical ingredients (APIs) are presently considered an emergent class of environmental contaminants. Ibuprofen (IBU) is one of the most applied non-steroidal anti-inflammatory drugs (NSAIDs) in the world. Several authors report the occurrence of IBU in influents and effluents of waste water treatment plants (WWTPs), surface, river and public tap water in numerous countries. However, very little is known about the risks and chronic effects of IBU exposure in non-target organisms. This approach undertakes the assessment of several oxidative stress biomarkers responses through the analysis of antioxidant enzymes activities (superoxide dismutase - SOD, catalase - CAT, glutathione S-transferase - GST, glutathione reductase - GR) and lipid peroxidation (LPO) levels in sentinel species mussel Mytilus galloprovincialis gills exposed for 2 weeks to an environmental realistic concentration of IBU. Results clearly show the significant induction and positive correlation between SOD activity and LPO in exposed gills, concomitant to an antioxidant defense depletion of CAT, GR and GST compared to controls. The integration of all biomarkers in mussels' gills separates non- and exposed groups supporting the breakdown of the redox defense system and IBU's pro-oxidant action. Further studies are needed to test possible endocrine disruption effects in mussels' reproduction fitness as IBU is involved on prostaglandins biosynthesis inhibition. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available