4.7 Article

AhR2-mediated, CYP1A-independent cardiovascular toxicity in zebrafish (Danio rerio) embryos exposed to retene

Journal

AQUATIC TOXICOLOGY
Volume 101, Issue 1, Pages 165-174

Publisher

ELSEVIER
DOI: 10.1016/j.aquatox.2010.09.016

Keywords

Alkylated polycyclic aromatic hydrocarbons; Retene; Aryl hydrocarbon receptor; Cytochrome P450 1A; Embryotoxicity; Cardiac development

Funding

  1. Natural Sciences and Engineering Research Council [RGPIN 184288]
  2. Queen's University

Ask authors/readers for more resources

In the embryo-larval stages of fish, alkylphenanthrenes such as retene (7-isopropyl-1-methylphenanthrene) produce a suite of developmental abnormalities typical of exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), including pericardial and yolk sac edema, cardiovascular dysfunction, and skeletal deformities. To investigate the mechanism and target tissue of retene toxicity, we used observational, histological, and protein knockdown techniques in zebrafish (Danio rerio) embryos. The primary overt signs of toxicity are pericardial edema and reduced blood flow, first observed at 36 h post-fertilization (hpf). The most pronounced effects at this stage are a reduced layer of cardiac jelly in the atrium and reduced diastolic filling. Conversely, an increased layer of cardiac jelly is observed at 72 hpf in retene-exposed embryos. Induction of cytochrome P4501A (CYP1A) is apparent in a subset of cardiomyocytes by 48 hpf suggesting that early cardiac effects may be due to AhR activation in the myocardium. Myocardial CYP1A induction is transient, with only endocardial induction observed at 72 hpf. Knockdown of cyp1a by morpholino oligonucleotides does not affect retene toxicity; however, ahr2 knockdown prevents toxicity. Thus, the mechanism of retene cardiotoxicity is AhR2-mediated and CYP1A-independent, similar to TCDD; however, the onset and proximate signs of retene toxicity differ from those of TCDD. Retene cardiotoxicity also differs mechanistically from the cardiac effects of non-alkylated phenanthrane, illustrating that alkyl groups can alter toxic action. These findings have implications for understanding the toxicity of complex mixtures containing alkylated and non-alkylated polycyclic aromatic hydrocarbons. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available