4.7 Article

The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica

Journal

MICROBIAL ECOLOGY
Volume 47, Issue 4, Pages 427-439

Publisher

SPRINGER
DOI: 10.1007/s00248-003-1007-x

Keywords

-

Ask authors/readers for more resources

The McMurdo Dry Valleys of Antarctica form the coldest and driest ecosystem on Earth. Within this region there arc a number of perennially ice-covered (3-6 m thick) lakes that support active microbial assemblages and have a paucity of metazoans. These lakes receive limited allochthonous input of carbon and nutrients, and primary productivity is limited to only 6 months per year owing to an absence of sunlight during the austral winters. In an effort to establish the role that bacteria and their associated viruses play in carbon and nutrient cycling in these lakes, indigenous bacteria, free bacteriophage, and lysogen abundances were determined. Total bacterial abundances (TDC) ranged from 3.80 x 10(4) to 2.58 x 10(7) cells mL(-1) and virus-like particle (VLP) abundances ranged from 2.26 x 10(5) to 5.56 x 10(7) VLP mL(-1). VLP abundances were significantly correlated (P < 0.05) with TDC, bacterial productivity (TdR), chlorophyll a (Chl a), and soluble reactive phosphorus (SRP). Lysogenic bacteria, determined by induction with mitomycin C, made up between 2.0% and 62.5% of the total population of bacteria when using significant decreases and increases in TDC and VLP abundances, respectively, and 89.5% when using increases in VLP abundances as the sole criterion for a successful induction event. The contribution of viruses released from induced lysogens contributed <0.015% to the total viral production rate. Carbohydrate and protein based organic aggregates were abundant within the water column of the lakes and were heavily colonized by bacteria and VLPs. Alkaline phosphatase activity was detected within the matrix of the aggregates, implying phosphorus deficiency and consortial nutrient exchanges among microorganisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available