4.7 Article

Interactions of pharmaceuticals and other xenobiotics on hepatic pregnane X receptor and cytochrome P450 3A signaling pathway in rainbow trout (Oncorhynchus mykiss)

Journal

AQUATIC TOXICOLOGY
Volume 100, Issue 1, Pages 91-100

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquatox.2010.07.013

Keywords

Nuclear receptors; PXR; CYP3A; P-glycoprotein; Pharmaceuticals; Fish

Funding

  1. FORMAS [216-2007-468]
  2. University of Gothenburg
  3. Adlerbertska Forskningsstiftelsen
  4. Helge Ax:sson Jonsons stiftelse
  5. Wilhelm och Martina Lundgrens Vetenskapsfond

Ask authors/readers for more resources

The pregnane X receptor (PXR) belongs to the nuclear hormone receptor (NR) superfamily and is commonly described as a xenophore or a pharmacophore, as it can be activated by a wide array of xenobiotics, including numerous pharmaceuticals and other environmental pollutants. The PXR regulates expression of e.g. cytochrome P450 3A (CYP3A) and the P-glycoprotein (P-gp) that are involved in excretion of lipophilic xenobiotics and endobiotics. A full length PXR cDNA was isolated from rainbow trout liver and it was expressed in a descending order of magnitude in liver > intestine > kidney > heart. A rainbow trout PXR reporter assay was developed and a suite of pharmaceuticals and other xenobiotics were screened. However, no specific activation of rainbow trout PXR was observed with the substances tested. Interactions of prototypical PXR agonists on PXR signaling in rainbow trout were further investigated in cells of hepatic origin exposed in vitro and in juvenile rainbow trout exposed in vivo. The rainbow trout hepatoma cell line (RTH-149), displayed 600 times lower expression of CYP3A mRNA compared to primary cultures of hepatocytes, and did not respond to treatment with either pregnenolone 16 alpha-carbonitrile (PCN), ketoconazole (KCZ) or rifampicin (RIF), which implies a non-functional PXR in this cell line. Exposure of hepatocytes to PCN and lithocholic acid (LA), resulted in a weak concentration-dependent induction of CYP3A and P-gp mRNA levels, though, exposure to the higher concentration of LA (50 mu M) decreased PXR mRNA levels. Exposure to dexamethasone (DEX) resulted in a decrease in PXR mRNA, without affecting CYP3A mRNA levels in hepatocytes in vitro. Injections of rainbow trout in vivo with 1 mg LA/kg fish resulted in a slight (albeit not significant) increase in CYP3A mRNA levels without affecting PXR mRNA levels. Although, injection with 10 mg omeprazole (OME)/kg fish had no effect on PXR and CYP3A mRNA levels, a 60% inhibition of CYP3A enzyme activities was evident. An in vitro screening of the chemicals used showed that OME and RIF acted as weak CYP3A inhibitors whereas LA and DEX did not affect the CYP3A activity. In contrast, PCN acted as an activator of the CYP3A enzyme activity in vitro. Taken together, these data show that some prototypical PXR agonists weakly affect PXR activation in rainbow trout. Besides, some of these agonists have a stronger effect on the CYP3A catalyst. This study demonstrates the importance of investigation effects of pharmaceuticals on the PXR signaling pathway in non-target animals such as fish. (c) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available