4.7 Article

Enantioselective transesterification using lipase-displaying yeast whole-cell biocatalyst

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 64, Issue 4, Pages 481-485

Publisher

SPRINGER
DOI: 10.1007/s00253-003-1486-1

Keywords

-

Ask authors/readers for more resources

An enantioselective transesterification in non-aqueous organic solvent was developed by utilizing a lipase-displaying yeast whole cell biocatalyst constructed in our previous study. As a model reaction, optical resolution of (RS)-1-phenylethanol, which serves as one of chiral building blocks, was carried out by enantioselective transesterification with vinyl acetate. Recombinant Rhizopus oryzae lipase displayed on the yeast cell surface retained its activity in hexane, heptane, cyclohexane and octane. The effective amount of whole-cell biocatalyst in the reaction mixture was 10 mg/ml solvent. In a reaction mixture incubated for 36 h with molecular sieves 4A, the concentration of (R)-1-phenylethyl acetate reached 39.8 mM (97.3% yield) with high enantiomeric excess (93.3%ee). In contrast, a reaction mixture incubated without molecular sieves 4A produced little (R)- and (S)-1-phenylethyl acetate. The results obtained in this study demonstrate the applicability of the lipase-displaying yeast whole cell biocatalyst to bioconversion processes in non-aqueous organic solvents.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available