4.3 Article

Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation

Journal

MOLECULAR REPRODUCTION AND DEVELOPMENT
Volume 68, Issue 1, Pages 35-50

Publisher

WILEY
DOI: 10.1002/mrd.20055

Keywords

preimplantation; embryo; human; BCL2; polyA PCR

Ask authors/readers for more resources

Apoptosis during preimplantation development has received much interest because of its potential role in eliminating defective cells. Although development in humans is characterised by a high degree of genetic abnormality, little is known of the regulation of apoptosis in embryos. By PolyA PCR we analysed expression of 11 BCL-2 genes in individual human embryos representative of normal development and in severely fragmented embryos. We demonstrate constitutive expression of BAX in virtually all embryos at all stages of development, and variable expression of BCL2, BCL-X-L, BCL-W, MCL-1 BAK, BAD, BOKL, BID, BIK, and BCL-X-S. The frequency of expression of pro- and anti-apoptotic BCL-2 members was similar throughout development, except at the two-cell stage where pro-apoptotic genes predominated. Protein expression was confirmed for BCL-2, MCL-1, BCL-X, BAX, BAD, and activated caspase 3. BCL-2 protein was associated with mitochondria but expressed inconsistently in the blastocyst inner cell mass. Consistent differences between morphologically intact and fragmented embryos included the expression of BAK in fragmented but not intact four-cell embryos. Our study addresses the importance of examining single human embryos representative of the viable population for a large number of genes, in order to establish meaningful expression profiles and provide information on overlapping function in a large gene family. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available