4.0 Article

An increased transforming growth factor β receptor type I:Type II ratio contributes to elevated collagen protein synthesis that is resistant to inhibition via a kinase-deficient transforming growth factor β receptor type II in scleroderma

Journal

ARTHRITIS AND RHEUMATISM
Volume 50, Issue 5, Pages 1566-1577

Publisher

WILEY
DOI: 10.1002/art.20225

Keywords

-

Categories

Funding

  1. NIAMS NIH HHS [AR 44883, AR 42334] Funding Source: Medline

Ask authors/readers for more resources

Objective. Aberrant transforming growth factor beta (TGFbeta) signaling has been implicated in the pathogenesis of scleroderma (systemic sclerosis [SSc]), but the contribution of specific components in this pathway to SSc fibroblast phenotype remains unclear. This study was undertaken to delineate the role of TGFbeta receptor type I (TGFbetaRI) and TGFbetaRII in collagen overexpression by SSc fibroblasts. Methods. Primary dermal fibroblasts from SSc patients and healthy adults were studied (n = 10 matched pairs). Adenoviral vectors were generated for TGFbetaRI (AdTGFbetaRI), TGFbetaRII (AdTGFbetaRII), and kinase-deficient TGFbetaRII (AdDeltakRII). TGFbetaRI basal protein levels were analyzed by S-35-methionine labeling/ immunoprecipitation and immunohistochemistry. Type I collagen and TGFbetaRII basal protein levels were analyzed by Western blot and newly secreted collagen by H-3-proline incorporation assay. Results. Analysis of endogenous TGFbetaRI and TGFbetaRII protein levels revealed that SSc TGFbetaRI levels were increased 1.7-fold (P = 0.008; n = 7) compared with levels in healthy controls, while TGFbetaRII levels were decreased by 30% (P = 0.03; n = 7). This increased TGFbetaRI:TGFbetaRII ratio correlated with SSc collagen overexpression. To determine the consequences of altered TGFbetaRI:TGFbetaRII ratio on collagen expression, healthy fibroblasts were transduced with, AdTGFbetaRI or AdTGFbetaRII. Forced expression of TGFbetaRI in the range corresponding to elevated SSc TGFbetaRI levels increased basal collagen expression in a dose-dependent manner, while similar TGFbetaRII overexpression had no effect, although transduction of fibroblasts at higher multiplicities of infection led to a marked reduction of basal collagen levels. Blockade of TGFbeta signaling via AdDeltakRII resulted in similar to50% inhibition of basal collagen levels in healthy fibroblasts and in 5 of 9 SSc cell lines. A subset of SSc fibroblasts (4 of 9 cell lines) was resistant to this treatment. SSc fibroblasts with the highest levels of TGFbetaRI were the least responsive to collagen inhibition via DeltakRII. Conclusion. This study indicates that an increased TGFbetaRI:TGFbetaRII ratio may underlie aberrant TGFbeta signaling in SSc and contribute to elevated basal collagen production, which is insensitive to TGFbeta signaling blockade via DeltakRII.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available