4.8 Article

Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation

Journal

NATURE BIOTECHNOLOGY
Volume 22, Issue 5, Pages 595-599

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt963

Keywords

-

Funding

  1. NHLBI NIH HHS [K08 HL076361] Funding Source: Medline

Ask authors/readers for more resources

Conventional drug discovery approaches require a priori selection of an appropriate molecular target, but it is often not obvious which biological pathways must be targeted to reverse a disease phenotype(1,2). Phenotype-based screens offer the potential to identify pathways and potential therapies that influence disease processes. The zebrafish mutation gridlock (grl, affecting the gene hey2) disrupts aortic blood flow in a region and physiological manner akin to aortic coarctation in humans(3-5). Here we use a whole-organism, phenotype-based, small-molecule screen to discover a class of compounds that suppress the coarctation phenotype and permit survival to adulthood. These compounds function during the specification and migration of angioblasts. They act to upregulate expression of vascular endothelial growth factor (VEGF), and the activation of the VEGF pathway is sufficient to suppress the gridlock phenotype. Thus, organism-based screens allow the discovery of small molecules that ameliorate complex dysmorphic syndromes even without targeting the affected gene directly.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available