4.6 Article

Pancreatic trypsin increases matrix metalloproteinase-9 accumulation and activation during acute intestinal ischemia-reperfusion in the rat

Journal

AMERICAN JOURNAL OF PATHOLOGY
Volume 164, Issue 5, Pages 1707-1716

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/S0002-9440(10)63729-7

Keywords

-

Categories

Funding

  1. NHLBI NIH HHS [HL 67825, R01 HL067825] Funding Source: Medline

Ask authors/readers for more resources

Ischeinia-reperfusion of the intestine produces a set of inflammatory mediators, the origin of which has recently been shown to involve pancreatic digestive enzymes. Matrix metalloproteinase-9 (MMP-9) participates in a variety of inflammatory processes including myocardial, hepatic, and pancreatic ischemia-reperfusion. In the present study, we explore the role of neutrophil-derived MMP-9 in acute intestinal ischemia-reperfusion and its interaction with pancreatic trypsin. Male Sprague-Dawley rats were subjected to 45 minutes of superior mesenteric arterial occlusion followed by 90 minutes of reperfusion. In situ zymography of the proximal jejunum reveals increased gelatinase activity in the intestinal wall after ischemia-reperfusion. Gel electrophoresis zymography and immunofluorescence co-localization suggests that this gelatinase activity is derived from MMP-9 released from infiltrating neutrophils. The role of intraluminal trypsin in this process was investigated using an in vivo isolated jejunal loop model of intestinal ischemia-reperfusion. Trypsin increased the inflammatory response after reperfusion, with an augmented neutrophil infiltration of the intestinal wall. Furthermore, trypsin stimulated a rapid conversion of neutrophil-released proMMP-9 into the lower molecular weight enzymatically active MMP-9. This process represents a powerful in vivo pathophysiological mechanism for trypsin-induced MMP-9 activation and is likely to play a central role in the development of acute intestinal inflammation and shock.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available