4.8 Article

Origins, lineage-specific expansions, and multiple losses of tyrosine kinases in eukaryotes

Journal

MOLECULAR BIOLOGY AND EVOLUTION
Volume 21, Issue 5, Pages 828-840

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/molbev/msh077

Keywords

tyrosine kinase; gene family; gene duplication; gene loss

Ask authors/readers for more resources

Tyrosine kinases are important components of metazoan signaling pathways, and their mutant forms are implicated in various malignancies. Searching the sequences from the genomes of 28 eukaryotes and the GenBank, we found tyrosine kinases not only in metazoans but also in the green algae Chlamydomonas reinhardtii, the potato late blight pathogen Phytophthora infstans, and the protozoan pathogen Entamoeba histolytica, contrary to the current view that tyrosine kinases are animal-specific. Based on a phylogenetic analysis, we divided this gene family into 43 subfamilies and found that at least 19 tyrosine kinases were likely present in the common ancestor of chordates, arthropods, and nematodes. Interestingly, most of the subfamilies have conserved domain organizations among subfamily members but have undergone different degrees of expansion during the evolution of metazoans. In particular, a large number of duplications occurred in the lineage leading to the common ancestor of Tagifugu and mammals after its split from the Ciona lineage about 450 to 550 MYA. The timing of expansion coincides with proposed large-scale duplication event in the chordate lineage. Furthermore, gene losses have occurred in most subfamilies. Interestingly, different subfamilies have similar net gain rates in the chordates studied. However, the tyrosine kinases in mouse and human or in fruit fly and mosquito mostly have a one-to-one relationship between species, indicating that static periods of 90 Myr or longer in tyrosine kinase evolution have followed large expansion events.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available