4.8 Article

Nitrate reduction by zerovalent iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 38, Issue 9, Pages 2715-2720

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/es034650p

Keywords

-

Ask authors/readers for more resources

Recent studies have shown that zerovalent iron (Fe-0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for groundwater nitrate remediation; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate reduction by Fe-0 have not been well understood. A 25.0 mL nitrate solution of 20.0 mg of N L-1 (1.43 mM nitrate) was reacted with 1.00 g of Peerless Fe-0 at 200 rpm on a rotational shaker at 23 degreesC for up to 120 h in the presence of each of the organic acids (3.0 mM formic, 1.5 mM oxalic, and 1.0 mM citric acids) and inorganic acids (3.0 mM HCl, 1.5 mM H2SO4, 3.0 mM H3BO3, and 1.5 mM H3PO4), These acids provided an initial dissociable H+ concentration of 3.0 mM available for nitrate reduction reactions under conditions of final pH < 9.3. Nitrate reduction rates (pseudo-first-order) increased in the order: H3PO4 < citric acid < H3BO3 < oxalic acid < H2SO4 < formic acid < HCl, ranging from 0.00278 to 0.0913 h(-1), corresponding to surface area normalized rates ranging from 0.126 to 4.15 h(-1) m(-2) mL. Correlation analysis showed a negative linear relationship between the nitrate reduction rates for the ligands and the conditional stability constants for the soluble complexes of the ligands with Fe2+ (R-2 = 0.701) or Fe3+ (R-2 = 0.918) ions. This sequence of reactivity corresponds also to surface adsorption and complexation of the three organic ligands to iron oxides, which increase in the order formate < oxalate < citrate. The results are also consistent with the sequence of strength of surface complexation of the inorganic ligands to iron oxides, which increases in the order: chloride < sulfate < borate < phosphate. The blockage of reactive sites on the surface of Fe-0 and its corrosion products by specific adsorption of the inner-sphere complex forming ligands (oxalate, citrate, sulfate, borate, and phosphate) may be responsible for the decreased nitrate reduction by Fe-0 relative to the chloride system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available