4.0 Article

Simple approach to micropattern cells on common culture substrates by tuning substrate wettability

Journal

TISSUE ENGINEERING
Volume 10, Issue 5-6, Pages 865-872

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/1076327041348365

Keywords

-

Funding

  1. NIBIB NIH HHS [EB00262] Funding Source: Medline

Ask authors/readers for more resources

The ability to spatially control cell adhesion and multicellular organization is critical to many biomedical and tissue-engineering applications. This work describes a straightforward method to micropattern cells onto glass, silicone rubber, and polystyrene using commercially available reagents. An elastomeric polydimethylsiloxane stamp is used to contact-transfer extracellular matrix protein onto a surface followed by blocking cell adhesion in the surrounding regions by the physisorption of Pluronic surfactants. Using self-assembled monolayers of alkanethiols on gold as model surfaces to control surface wettability, we found that protein printing was most effective at intermediate to highly wetting surfaces whereas Pluronic adsorption occurred at intermediate to low wetting surfaces. Within a regimen of intermediate wettability both techniques were applied in conjunction to restrict cell adhesion to specified patterns. Adjusting the wettability of common tissue culture substrates to the same intermediate range again allowed the micropatterning of cells, suggesting that this approach is likely to be generally applicable to many types of materials. This technique therefore may allow for wider adoption of cell patterning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available