4.6 Article

Induced polarization measurements on unsaturated, unconsolidated sands

Journal

GEOPHYSICS
Volume 69, Issue 3, Pages 762-771

Publisher

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.1759462

Keywords

-

Ask authors/readers for more resources

Induced polarization (IP) measurements were obtained on unsaturated, unconsolidated sediments during (1) evaporative drying and (2) pressure drainage followed by subsequent imbibition (water reentry). Porous ceramic discs were used with existing laboratory IT instrumentation to permit accurate IP measurements on unsaturated samples. Polarization magnitude during evaporative drying approximates a power law dependence on saturation. Saturation exponents for the polarization term were consistently less than Archie conduction exponents, although no clear relationship between the exponents was observed. The polarization measured over a pressure drainage and imbibition cycle exhibits a complex (yet similar between tested samples) saturation dependence, being a function of saturation range and saturation history. Polarization is observed to increase with saturation over certain saturation intervals, yet decrease with saturation over others. High polarization observed during sample imbibition is consistent with a model for the development of a continuous charged air-fluid interface as previously proposed to explain hysteresis in resistivity measurements. The saturation dependence of the phase angle measured in IP in large part results from changes in conduction as pores fill and drain. Models of low-frequency polarization based on grain-size-controlled and pore-size-controlled relaxation both support dependence of IT measurements on saturation. Our results suggest that saturation dependent polarization must be considered for effective interpretation of IT measurements from the vadose zone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available