4.3 Article

Short-term effects of phosphorus addition and pH rise on bacterial utilization and biodegradation of dissolved organic carbon (DOC) from boreal mires

Journal

AQUATIC ECOLOGY
Volume 48, Issue 4, Pages 435-446

Publisher

SPRINGER
DOI: 10.1007/s10452-014-9496-x

Keywords

Bacterial production; Bacterial growth efficiency; Drainage; Peatland; Runoff; Water quality

Funding

  1. Maj and Tor Nessling foundation

Ask authors/readers for more resources

Natural mires and forested peatlands are known to be very significant sources of dissolved organic carbon (DOC) to aquatic ecosystems. Peatland management operations (e.g., forestry operations, restoration of drained mires and peat mining) and extreme hydrological events may increase the DOC runoff. We hypothesized that an increase in phosphorus (P) leaching, together with near-neutral conditions in recipient lakes will accelerate decomposition of DOC that originates from acidic, nutrient-poor mire waters. The efficiency of DOC utilization was evaluated by measuring microbial respiration and bacterial production (BP) in short-term laboratory experiments with runoff waters from six boreal mire sites. Mere inorganic phosphorus (PO4-P) addition did not affect the rate of respiration or the proportion of decayed DOC. However, in the nutrient-poor bog waters, P addition slightly promoted BP and bacterial growth efficiency (BGE). In contrast, the elevation of pH alone, and the elevation of pH and PO4-P level together, caused a significant increase in respiration and in the proportion of decayed DOC, but did not affect net BP. Elevated pH alone, however, depressed BGE when compared to that under the combined elevation of pH and PO4-P. These results suggest that the increased P availability, e.g., after mire restoration, would slightly benefit bacterial net growth in P-limited waters. However, in near-neutral recipient lakes, the increased microbial decomposition of mire-originated DOC contributes more to carbon dioxide (CO2) supersaturation than potentially supporting detritus-based food chains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available