4.8 Article

Mechanistic evaluation of the glucose-induced reduction in initial burst release of octreotide acetate from poly(D,L-lactide-co-glycolide) microspheres

Journal

BIOMATERIALS
Volume 25, Issue 10, Pages 1919-1927

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2003.08.019

Keywords

biodegradable microspheres; initial burst; glucose; continuous monitoring; permeability

Funding

  1. NHLBI NIH HHS [HL 68345] Funding Source: Medline

Ask authors/readers for more resources

One major obstacle for development of injectable biodegradable microspheres for controlled peptide and protein delivery is the high initial burst of drug release occurring over the first day of incubation. We describe here the significant reduction in initial burst release of a highly water-soluble model peptide, octreotide acetate, from poly(D,L-lactide-co-glycolide) microspheres by the co-encapsulation of a small amount of glucose (e.g., 0.2% w/w), i.e., from 30 +/- 20% burst - glucose to 8 +/- 3% + glucose (mean +/- SD, n = 4). This reduction is unexpected since hydrophilic additives are known to increase porosity of microspheres, causing an increase in permeability to mass transport and a higher burst. Using the double emulsion-solvent evaporation method of encapsulation, the effect of glucose on initial burst in an acetate buffer pH 4 was found to depend on polymer concentration, discontinuous phase/continuous phase ratio, and glucose content. Extensive characterization studies were performed on two microsphere batches, +/-0.2% glucose, to elucidate the mechanism of this effect. However, no significant difference was observed with respect to specific surface area, porosity, internal and external morphology and drug distribution. Continuous monitoring of the first 24-h release of octreotide acetate from these two batches disclosed that even though their starting release rates were close, the microspheres + glucose exhibited a much lower release rate between 0.2 and 24 h compared to those - glucose. The microspheres + glucose showed a denser periphery and a reduced water uptake at the end of 24-h release, indicating decreased permeability. However, this effect at times was offset as glucose content was further increased to 1%, causing an increase in surface area and porosity. In summary, we conclude that the effect of glucose on initial burst are determined by two factors: (1) increased initial burst due to increased osmotic pressure during encapsulation and drug release, and (2) decreased initial burst due to decreased permeability of microspheres. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available