4.6 Article

Fractional quantum Hall states of clustered composite fermions -: art. no. 205322

Journal

PHYSICAL REVIEW B
Volume 69, Issue 20, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.69.205322

Keywords

-

Ask authors/readers for more resources

The energy spectra and wave functions of up to 14 interacting quasielectrons (QE's) in the Laughlin nu=1/3 fractional quantum Hall (FQH) state are investigated using exact numerical diagonalization. It is shown that at sufficiently high density the QE's form pairs or larger clusters. This behavior, opposite to Laughlin correlations, invalidates the (sometimes invoked) reapplication of the composite fermion picture to the individual QE's. The series of finite-size incompressible ground states are identified at the QE filling factors nu(QE)=1/2, 1/3, 2/3, corresponding to the electron fillings nu=3/8, 4/11, 5/13. The equivalent quasihole (QH) states occur at nu(QH)=1/4, 1/5, 2/7, corresponding to nu=3/10, 4/13, 5/17. All these six novel FQH states were recently discovered experimentally. Detailed analysis indicates that QE or QH correlations in these states are different from those of well-known FQH electron states (e.g., Laughlin or Moore-Read states), leaving the origin of their incompressibility uncertain. Halperin's idea of Laughlin states of QP pairs is also explored, but is does not seem adequate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available