4.5 Article

Prediction of torsade-causing potential of drugs by support vector machine approach

Journal

TOXICOLOGICAL SCIENCES
Volume 79, Issue 1, Pages 170-177

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/toxsci/kfh082

Keywords

support vector machine; torsade de pointes; linear solvation energy relationship; prediction

Categories

Ask authors/readers for more resources

In an effort to facilitate drug discovery, computational methods for facilitating the prediction of various adverse drug reactions (ADRs) have been developed. So far, attention has not been sufficiently paid to the development of methods for the prediction of serious ADRs that occur less frequently. Some of these ADRs, such as torsade de pointes (TdP), are important issues in the approval of drugs for certain diseases. Thus there is a need to develop tools for facilitating the prediction of these ADRs. This work explores the use of a statistical learning method, support vector machine (SVM), for TdP prediction. TdP involves multiple mechanisms and SVM is a method suitable for such a problem. Our SVM classification system used a set of linear solvation energy relationship (LSER) descriptors and was optimized by leave-one-out cross validation procedure. Its prediction accuracy was evaluated by using an independent set of agents and by comparison with results obtained from other commonly used classification methods using the same dataset and optimization procedure. The accuracies for the SVM prediction of TdP-causing agents and non-TdP-causing agents are 97.4 and 84.6% respectively; one is substantially improved against and the other is comparable to the results obtained by other classification methods useful for multiple-mechanism prediction problems. This indicates the potential of SVM in facilitating the prediction of TdP-causing risk of small molecules and perhaps other ADRs that involve multiple mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available