4.5 Article

Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis

Journal

ENDOCRINOLOGY
Volume 145, Issue 5, Pages 2421-2432

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2003-1156

Keywords

-

Funding

  1. NIAMS NIH HHS [R01 AR43225, P30 AR 46031] Funding Source: Medline

Ask authors/readers for more resources

Space flight-induced bone loss has been attributed to a decrease in osteoblast function, without a significant change in bone resorption. To determine the effect of microgravity (MG) on bone, we used the Rotary Cell Culture System [ developed by the National Aeronautics and Space Administration (NASA)] to model MG. Cultured mouse calvariae demonstrated a 3-fold decrease in alkaline phosphatase ( ALP) activity and failed to mineralize after 7 d of MG. ALP and osteocalcin gene expression were also decreased. To determine the effects of MG on osteoblastogenesis, we cultured human mesenchymal stem cells (hMSC) on plastic microcarriers, and osteogenic differentiation was induced immediately before the initiation of modeled MG. A marked suppression of hMSC differentiation into osteoblasts was observed because the cells failed to express ALP, collagen 1, and osteonectin. The expression of runt-related transcription factor 2 was also inhibited. Interestingly, we found that peroxisome proliferator-activated receptor gamma (PPARgamma2), which is known to be important for adipocyte differentiation, adipsin, leptin, and glucose transporter-4 are highly expressed in response to MG. These changes were not corrected after 35 d of readaptation to normal gravity. In addition, MG decreased ERK- and increased p38-phosphorylation. These pathways are known to regulate the activity of runt-related transcription factor 2 and PPARgamma2, respectively. Taken together, our findings indicate that modeled MG inhibits the osteoblastic differentiation of hMSC and induces the development of an adipocytic lineage phenotype. This work will increase understanding and aid in the prevention of bone loss, not only in MG but also potentially in age- and disuse-related osteoporosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available