4.6 Article

RR Lyrae stars in the Andromeda halo from deep imaging with the Advanced Camera for Surveys

Journal

ASTRONOMICAL JOURNAL
Volume 127, Issue 5, Pages 2738-2752

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/386355

Keywords

galaxies : evolution; galaxies : halos; galaxies : individual (M31); galaxies : stellar content; stars : variables : other

Ask authors/readers for more resources

We present a complete census of RR Lyrae stars in a halo field of the Andromeda galaxy. These deep observations, taken as part of a program to measure the star formation history in the halo, spanned a period of 41 days with sampling on a variety of timescales, enabling the identification of short- and long-period variables. Although the long-period variables cannot be fully characterized within the time span of this program, the enormous advance in sensitivity provided by the Advanced Camera for Surveys on the Hubble Space Telescope allows accurate characterization of the RR Lyrae population in this field. We find 29 RRab stars with a mean period of 0.594 days, 25 RRc stars with a mean period of 0.316 days, and one RRd star with a fundamental period of 0.473 days and a first-overtone period of 0.353 days. These 55 RR Lyrae stars imply a specific frequency S(RR) approximate to 5.6, which is large given the high mean metallicity of the halo, but not surprising given that these stars arise from the old, metal-poor tail of the distribution. This old population in the Andromeda halo cannot be clearly placed into one of the Oosterhoff types: the ratio of RRc/RRabc stars is within the range seen in Oosterhoff II globular clusters, the mean RRab period is in the gap between Oosterhoff types, and the mean RRc period is in the range seen in Oosterhoff I globular clusters. The periods of these RR Lyrae stars suggest a mean metallicity of [Fe/H] approximate to - 1.6, while their brightness implies a distance modulus to Andromeda of 24.5 +/- 0.1, in good agreement with the Cepheid distance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available