4.5 Article

Immunohistochemical localization of asparoacylase in the rat central nervous system

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 472, Issue 3, Pages 318-329

Publisher

WILEY
DOI: 10.1002/cne.20080

Keywords

ASPA; deacetylase; N-acetylaspartate; oligodendrocytes; Canavan disease; myelin deficiency; microglia; acetate

Funding

  1. NINDS NIH HHS [R01 NS39387] Funding Source: Medline

Ask authors/readers for more resources

Aspartoacylase (ASPA; EC 3.5.1.15) catalyzes deacetylation of N-acetylaspartate (NAA) to generate free acetate in the central nervous system (CNS). Mutations in the gene coding ASPA cause Canavan disease (CD), an autosomal recessive neurodegenerative disease that results in death before 10 years of age. The pathogenesis of CD remains unclear. Our working hypothesis is that deficiency in the supply of the NAA-derived acetate leads to inadequate lipid/myelin synthesis during development, resulting in CD. To explore the localization of ASPA in the CNS, we used double-label immunohistochemistry for ASPA and several cell-specific markers. A polyclonal antibody was generated in rabbit against mouse recombinant ASPA, which reacted with a single band (similar to37 kD) on Western blots of rat brain homogenate. ASPA colocalized throughout the brain with CC1 , a marker for oligodendrocytes, with 92-98% of CC1-positive cells also reactive with the ASPA antibody. Many cells were labeled with ASPA antibodies in white matter, including cells in the corpus callosum and cerebellar white matter. Relatively fewer cells were labeled in gray matter, including cerebral cortex. No astrocytes were labeled for ASPA. Neurons were unstained in the forebrain, although small numbers of large reticular and motor neurons were faintly to moderately stained in the brainstem and spinal cord. Many ascending and descending neuronal fibers were moderately stained for ASPA in the medulla and spinal cord. Microglial-like cells showed faint to moderate staining with the ASPA antibodies throughout the brain by the avidin/biotin-peroxidase detection method, and colocalization studies with labeled lectins confirmed their identity as microglia. The predominant immunoreactivity in oligodendrocytes is consistent with the proposed role of ASPA in myelination, supporting the case for acetate supplementation as an immediate and inexpensive therapy for infants diagnosed with CD. Published 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available