4.6 Article

Engineering molecular rings for magnetocaloric effect

Journal

APPLIED PHYSICS LETTERS
Volume 84, Issue 18, Pages 3468-3470

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1737468

Keywords

-

Ask authors/readers for more resources

By substituting one Cr3+(s=3/2) with Cd2+(s=0) in molecular octanuclear rings, a diluted ensemble of identical nanomagnets with a S=3/2 ground state, weakly split in zero field, is obtained. The lattice contribution and the essential parameters of the spin Hamiltonian of these uncompensated antiferromagnetic cyclic spin systems are determined by fitting specific heat data between 0.4 and 20 K in magnetic fields up to 7 T. Different entropy contributions are evaluated and results suggest a possible way of engineering molecular magnets to exploit low temperature magnetocaloric effect. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available