4.4 Article

Photosynthetic acclimation within individual Typha latifolia leaf segments

Journal

AQUATIC BOTANY
Volume 111, Issue -, Pages 54-61

Publisher

ELSEVIER
DOI: 10.1016/j.aquabot.2013.08.007

Keywords

Freshwater marsh; Light profile; CO2 assimilation capacity; Dark respiration; Nitrogen content

Funding

  1. University of California-Consejo Nacional de Ciencia y Tecnologia (UCMEXUS-CONACYT)
  2. University of California Water Resources Center

Ask authors/readers for more resources

Growing Typha latifolia leaf segments traverse a wide range of light environments as they are pushed upward from basal meristems through sediment, water, and dense litter and leaf layers. We used light transfer experiments in a greenhouse to investigate the photosynthetic acclimation of individual Typha leaf segments. Fully expanded leaf segments exhibited strong and symmetrical acclimation to increases or decreases in light. The photosynthetic light response curves of shade grown segments that were transferred to high light acclimated within 10-15 days to match those of segments that grew and remained in high light. Acclimation was highly localized; the light response curves of shade grown segments that remained shaded did not change, even as adjacent segments acclimated to high light. Leaf segments exposed to various treatments did not differ significantly in leaf mass per area; Typha leaves are apparently morphologically preformed to function in high light and allow high photosynthetic capacity, regardless of the growth environment. Likewise, nitrogen content did not differ significantly between treatments, and photosynthetic acclimation may involve a reallocation or activation of nitrogen within a leaf segment, rather than a net nitrogen translocation into or out of a segment. We interpret these patterns as an adaptive strategy that maximizes carbon gain by monocot leaves growing in a vertically heterogeneous light environment (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available