4.6 Article

C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 19, Pages 19970-19976

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M402165200

Keywords

-

Ask authors/readers for more resources

Energy homeostasis and feeding are regulated by the central nervous system. C75, a fatty acid synthase (FAS) inhibitor, causes weight loss and anorexia, implying a novel central nervous system pathway(s) for sensing energy balance. AMP-activated protein kinase (AMPK), a sensor of peripheral energy balance, is phosphorylated and activated when energy sources are low. Here, we identify a role for hypothalamic AMPK in the regulation of feeding behavior and in mediating the anorexic effects of C75. 5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR), an activator of AMPK, increased food intake, whereas compound C, an inhibitor of AMPK, decreased food intake. C75 rapidly reduced the level of the phosphorylated AMPK alpha subunit (pAMPKalpha) in the hypothalamus, even in fasted mice that had elevated hypothalamic pAMPKalpha levels. Furthermore, AICAR reversed both the C75-induced anorexia and the decrease in hypothalamic pAMPKalpha levels. C75 elevated hypothalamic neuronal ATP levels, which may contribute to the mechanism by which C75 decreased AMPK activity. C75 reduced the levels of pAMPKalpha and phosphorylated cAMP response element-binding protein (pCREB) in the arcuate nucleus neurons of the hypothalamus, suggesting a mechanism for the reduction in NPY expression seen with C75 treatment. These data indicate that modulation of FAS activity in the hypothalamus can alter energy perception via AMPK, which functions as a physiological energy sensor in the hypothalamus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available