4.8 Article

Direct visual observation of thermal capillary waves

Journal

SCIENCE
Volume 304, Issue 5672, Pages 847-850

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1097116

Keywords

-

Ask authors/readers for more resources

We studied the free fluid-fluid interface in a phase-separated colloid-polymer dispersion with laser scanning confocal microscopy and directly observed thermally induced capillary waves at the interface in real space. Experimental results for static and dynamic correlation functions validate the capillary wave model down to almost the particle level. The ultralow interfacial tension, the capillary length, and the capillary time are found to be in agreement with independent measurements. Furthermore, we show that capillary waves induce the spontaneous breakup of thin liquid films and thus are of key importance in the process of droplet coalescence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available