4.5 Article

Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice

Journal

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS
Volume 5, Issue -, Pages -

Publisher

AMER GEOPHYSICAL UNION
DOI: 10.1029/2003GC000655

Keywords

ash; ice; and sulfate particles; Pinatubo Volcanic Cloud; satellite remote sensing; atmospheric composition and structure : volcanic effects; atmospheric composition and structure : aerosols and particles; global change : remote sensing

Ask authors/readers for more resources

[1] Pinatubo's 15 June 1991 eruption was Earth's largest of the last 25 years, and it formed a substantial volcanic cloud. We present results of analysis of satellite-based infrared remote sensing using Advanced Very High Resolution Radiometer (AVHRR) and TIROS Operational Vertical Sounder/High Resolution Infrared Radiation Sounder/2 (TOVS/HIRS/2) sensors, during the first few days of atmospheric residence of the Pinatubo volcanic cloud, as it drifted from the Philippines toward Africa. An SO2-rich upper (25 km) portion drifted westward slightly faster than an ash-rich lower (22 km) part, though uncertainty exists due to difficulty in precisely locating the ash cloud. The Pinatubo clouds contained particles of ice, ash, and sulfate which could be sensed with infrared satellite data. Multispectral IR data from HIRS/2 were most useful for sensing the Pinatubo clouds because substantial amounts of both ice and ash were present. Ice and ash particles had peak masses of about 80 and 50 Mt, respectively, within the first day of atmospheric residence and declined very rapidly to values that were < 10 Mt within 3 days. Ice and ash declined at a similar rate, and it seems likely that ice and ash formed mixed aggregates which enhanced fallout. Sulfate particles were detected in the volcanic cloud by IR satellites very soon after eruption, and their masses increased systematically at a rate consistent with their formation from SO2, which was slowly decreasing in mass during the same period. The initially detected sulfate mass was 4 Mt ( equivalent to 3 Mt SO2) and after 5 days was 12 - 16 Mt (equivalent to 9 - 12 Mt SO2).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available