4.6 Article

Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells

Journal

LANGMUIR
Volume 20, Issue 10, Pages 4205-4210

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la0357615

Keywords

-

Ask authors/readers for more resources

The effects of deoxycholic acid (DCA) and 4-tert-butylpyridine (TBP) as additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells were investigated. DCA coadsorption improved both the photocurrent and photovoltage of the solar cells, even though it decreased the amount of dye adsorbed on the TiO2 electrode. The improved photocurrent may arise from suppression of the deactivation of the excited state via quenching processes between dye molecules or a more negative LUMO level of the dye in the presence of DCA, resulting in a high electron-injection yield from the dye into TiO2. The increased photovoltage is probably due to suppression of recombination between the injected electrons and I-3(-) ions on the TiO2 surface (dark current). The addition of TBP to the electrolyte also markedly improved the photovoltage and fill factor of the solar cell, and consequently, the total conversion efficiency increased from 3.6% to 7.5%. FT-IR spectroscopy indicated that a large amount of TBP was adsorbed on the dye-coated TiO2 films in the presence of Li cations. This result suggests that TBP, like DCA, suppressed the dark current on the TiO2 surface, which resulted in the improved photovoltage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available