4.6 Article

Polystyrene-b-poly(acrylic acid) vesicle size control using solution properties and hydrophilic block length

Journal

LANGMUIR
Volume 20, Issue 10, Pages 3894-3900

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la035924p

Keywords

-

Ask authors/readers for more resources

Polymeric vesicles have attracted considerable attention in recent years, since they are a model for biological membranes and have versatile structures with several practical applications. In this study, we prepare vesicles from polystlyrene-b-poly(acrylic acid) block copolymer in dioxane/water and dioxane/ THF/water mixtures. We then examine the ability of additives (such as NaCl, HCl, or NaOH), solvent composition, and hydrophilic block length to control vesicle size. Using turbidity measurements and transmission electron microscopy (TEM) we show that larger vesicles can be prepared from a given copolymer by adding NaCl or HCl, while adding NaOH yields smaller vesicles. The solvent composition (ratio of dioxane to THF, as well as the water content) can also determine the vesicle size. From a given copolymer, smaller vesicles can be prepared by increasing the THF content in the THF/dioxane solvent mixture. In a given solvent mixture, vesicle size increases with water content, but such an increase is most pronounced when dioxane is used as the solvent. In THF-rich solutions, on the other hand, vesicle size changes only slightly with the water concentration. As to the effect of the acrylic acid block length, the results show that block copolymers with shorter hydrophilic blocks assemble into larger vesicles. The effect of additives and solvent composition on vesicle size is related to their influence on chain repulsion and aggregation number, whereas the effect of acrylic acid block length occurs because of the relationship among the block length, the width of the molecular weight distribution, and the stabilization of the vesicle curvature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available