4.8 Article

Modelling disease outbreaks in realistic urban social networks

Journal

NATURE
Volume 429, Issue 6988, Pages 180-184

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nature02541

Keywords

-

Ask authors/readers for more resources

Most mathematical models for the spread of disease use differential equations based on uniformmixing assumptions(1) or ad hoc models for the contact process(2-4). Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like(5) graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free(6), which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available