4.6 Article

Determination of the disulfide bond arrangement of dengue virus NS1 protein

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 20, Pages 20729-20741

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M312907200

Keywords

-

Ask authors/readers for more resources

The 12 half-cystines of NS1 proteins are absolutely conserved among flaviviruses, suggesting their importance to the structure and function of these proteins. In the present study, peptides from recombinant Dengue-2 virus NS1 were produced by tryptic digestion in 100% (H2O)-O-16, peptic digestion in 50% (H2O)-O-18, thermolytic digestion in 50% (H2O)-O-18, or combinations of these digestion conditions. Peptides were separated by size exclusion and/or reverse phase high performance liquid chromatography and examined by matrix-assisted laser desorption ionization-time of flight mass spectrometry, matrix-assisted laser desorption ionization post-source decay, and matrix-assisted laser desorption ionization tandem mass spectrometry. Where digests were performed in 50% (H2O)-O-18, isotope profiles of peptide ions aided in the identification and characterization of disulfide-linked peptides. It was possible to produce two-chain peptides containing C1/C2, C3/C4, C5/C6, and C7/C12 linkages as revealed by comparison of the peptide masses before and after reduction and by post-source decay analysis. However, the remaining four half-cystines (C8, C9, C10, and C11) were located in a three-chain peptide of which one chain contained adjacent half-cystines (C9 and C10). The linkages of C8/C10 and C9/C11 were determined by tandem mass spectrometry of an in-source decay fragment ion containing C9, C10, and C11. This disulfide bond arrangement provides the basis for further refinement of flavivirus NS1 protein structural models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available