4.8 Article

Self-sustained activity in a small-world network of excitable neurons

Journal

PHYSICAL REVIEW LETTERS
Volume 92, Issue 19, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.92.198101

Keywords

-

Ask authors/readers for more resources

We study the dynamics of excitable integrate-and-fire neurons in a small-world network. At low densities p of directed random connections, a localized transient stimulus results either in self-sustained persistent activity or in a brief transient followed by failure. Averages over the quenched ensemble reveal that the probability of failure changes from 0 to 1 over a narrow range in p; this failure transition can be described analytically through an extension of an existing mean-field result. Exceedingly long transients emerge at higher densities p; their activity patterns are disordered, in contrast to the mostly periodic persistent patterns observed at low p. The times at which such patterns die out follow a stretched-exponential distribution, which depends sensitively on the propagation velocity of the excitation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available