4.6 Article

Ryanodine receptor signaling is required for anti-CD3-induced T cell proliferation, interleukin-2 synthesis, and interleukin-2 receptor signaling

Journal

JOURNAL OF CELLULAR BIOCHEMISTRY
Volume 92, Issue 2, Pages 387-399

Publisher

WILEY
DOI: 10.1002/jcb.20064

Keywords

T lymphocyte; calcium; interleukin-2; ryanodine receptor

Ask authors/readers for more resources

Ryanodine receptors (RyR) are involved in regulating intracellular Ca++ mobilization in T lymphocytes. However, the importance of RyR signaling during T cell activation has not yet been determined. In this study, we have used the RyR-selective antagonists, ruthenium red and dantrolene, to determine the effect of RyR blockade on T cell receptor-mediated activation events and cytokine-dependent T cell proliferation. Both ruthenium red and dantrolene inhibited DNA synthesis and cell division, as well as the synthesis of interleukin (IL)-2 by T lymphocytes responding to mitogenic anti-CD3 antibody. Blockade of RyR at initiation of culture or as late as 24 h after T cell receptor stimulation inhibited T cell proliferation, suggesting a requirement for sustained RyR signaling during cell cycle progression. Although flow cytometry revealed that RyR blockade had little effect on activation-induced expression of the alpha chain (CD25) of the high affinity IL-2 receptor, the inhibitory effect of RyR antagonists could not be reversed by the addition of exogenous IL-2 at initiation of culture. In addition, both ruthenium red and dantrolene had a strong inhibitory effect on IL-2-dependent proliferation of CTLL-2 T cells. These data indicate that RyR are involved in regulating IL-2 receptor signaling that drives T cell progression through the cell cycle. We conclude that RyR-associated Ca++ signaling regulates T cell proliferation by promoting both IL-2 synthesis and IL-2-dependent cell cycle progression. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available