4.5 Article

Probing the mechanism of drug/lipid membrane interactions using Biacore

Journal

ANALYTICAL BIOCHEMISTRY
Volume 328, Issue 2, Pages 233-243

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ab.2004.01.018

Keywords

plasmon; permeability; affinity; binding; phospholipidosis

Ask authors/readers for more resources

Assay conditions were established to screen a panel of drugs for binding to liposome surfaces using a surface plasmon resonance (SPR) biosensor. Drugs were found to bind negligibly or reversibly or were retained on the liposome surface. Cationic amphiphilic drugs fell into the last class and correlated with drugs that induce phospholipidosis in vivo. To a first approximation, a single-site model yielded apparent binding affinities that adequately described a drug's dose-dependent binding to liposome surfaces. Affinities ranged at least 1000-fold within the drug panel. A liposome's drug-binding capacity and affinity depended on both the lipid head-group and the drug's structure. Although a drug's charge state generally dominated whether or not it remained bound to the liposome, subtle structural differences between members of certain drug families led to them having widely differing binding affinities. A comparison between the dissociation of drugs from liposome surfaces by Biacore and the lipid retention measurements determined by a parallel artificial membrane permeability assay was drawn. The results from this study demonstrate the potential of using SPR-based assays to characterize drug/liposome-binding interactions. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available