4.6 Article

Human CD4+CD25+ regulatory T cells share equally complex and comparable repertoires with CD4+CD25-counterparts

Journal

JOURNAL OF IMMUNOLOGY
Volume 172, Issue 10, Pages 6123-6128

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.172.10.6123

Keywords

-

Categories

Funding

  1. NCI NIH HHS [T32CA70089] Funding Source: Medline

Ask authors/readers for more resources

CD4(+)CD25(+) T cells are critical mediators of peripheral immune tolerance. However, many developmental and functional characteristics of these cells are unknown, and knowledge of human regulatory T cells is particularly limited. To better understand how human CD4(+)CD25(+) T cells develop and function, we examined the diversity of CD4(+)CD25(+) and CD4(+)CD25(+) T cell repertoires in both thymus and peripheral blood. Levels of T receptor excision circles (TREC) were comparable in purified CD4(+)CD25(+) and CD4(+)CD25(-) thymic populations, but were significantly higher than those in samples derived from peripheral blood, consistent with murine studies demonstrating thymic development of CD4(+)CD25(+) regulatory T cells. Surprisingly, CD4(+)CD25(-) T cells isolated from peripheral blood had greater TREC quantities than their CD4(+)CD25(+) counterparts, supporting the possibility of extrathymic expansion as well. CD4(+)CD25(+) and CD4(+)CD25(-) T cells from a given individual showed overlapping profiles with respect to diversity by Vbeta staining and spectratyping. Interestingly, CD4(+)CD25(+) T cells have lower quantities of CD3 than CD4(+)CD25(-) T cells. Collectively, these data suggest that human CD4(+)CD25(+) T cells recognize a similar array of Ags as CD4(+)CD25(-) T cells. However, reduced levels of TCR on regulatory T cells suggest different requirements for activation and may contribute to how the immune system regulates whether a particular response is suppressed or augmented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available