4.8 Article

Endothelial cell surface ATP synthase-triggered caspase-apoptotic pathway is essential for K1-5-Induced antiangiogenesis

Journal

CANCER RESEARCH
Volume 64, Issue 10, Pages 3679-3686

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-03-1754

Keywords

-

Categories

Funding

  1. NCI NIH HHS [CA-86344] Funding Source: Medline

Ask authors/readers for more resources

We have recently reported the identification of kringle 1-5 (K1-5) of plasminogen as a potent and specific inhibitor of angiogenesis and tumor growth. Here, we show that K1-5 bound to endothelial cell surface ATP synthase and triggered caspase-mediated endothelial cell apoptosis. Induction of endothelial apoptosis involved sequential activation of caspases-8, -9, and -3. Administration of neutralizing antibodies directed against the alpha- and beta-subunits of ATP synthase to endothelial cells attenuated activation of these caspases. Furthermore, inhibitors of caspases-3, -8, and -9 also remarkably blocked K1-5-induced endothelial cell apoptosis and antiangiogenic responses. In a mouse tumor model, we show that caspase-3 inhibitors abolished the antitumor activity of K1-5 by protecting the tumor vasculature undergoing apoptosis. These results suggest that the specificity of the antiendothelial effect of K1-5 is attributable, at least in part, to its interaction with the endothelial cell surface ATP synthase and that the caspase-mediated endothelial apoptosis is essential for the angiostatic activity of K1-5. Thus, our findings provide a mechanistic insight with respect to the angiostatic action and signaling pathway of K1-5 and angiostatin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available