4.7 Article

Adenosine induces apoptosis in the human gastric cancer cells via an intrinsic pathway relevant to activation of AMP-activated protein kinase

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 67, Issue 10, Pages 2005-2011

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2004.01.020

Keywords

adenosine; GT3-TKB cells; apoptosis; AMP; AMP-activated protein kinase

Ask authors/readers for more resources

Extracellular adenosine significantly reduced cell viability in a dose (0.1-20 mM)- and treatment time (24-72 h)-dependent manner in GT3-TKB cells, a human gastric cancer cell line. Nuclei of cells were reactive to Hoechst 33342, a marker of apoptosis, and an anti-single-stranded DNA. Adenosine-induced GT3-TKB cell death was significantly inhibited by dipyridamole, an inhibitor of adenosine transporter, and 5'-amino-5'-deoxyadenosine, an inhibitor of adenosine kinase, but the effect was not affected by theophylline, a broad inhibitor of adenosine receptors, 8-cyclopentyltheophylline, an inhibitor of A(1) adenosine receptors or 3,7-dimethyl- l-propargylxanthine, an inhibitor of A(2a) adenosine receptors. Adenosine had no effect on mitochondrial membrane potentials. The effect of adenosine on GT3-TKB cell death was not inhibited by a pancaspase inhibitor or inhibitors of caspase- 1,-3,-4,-8, and -9. 5 -Aminoimidazole-4-carboxamide ribonucleoside (AICAR), an activator of AMP-activated protein kinase (AMPK), significantly reduced GT3-TKB cell viability, but the AICAR action was not reinforced in the presence of adenosine. The results of the present study, thus, suggest that extracellular adenosine induces apoptosis in GT3-TKB cells by its uptake into cells and conversion to AMP followed by activation of AMPK, regardless of caspase activation linked to the mitochondria and the endoplasmic reticulum. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available