4.4 Article

Differential effects of substrate on type I and type IIPKA holoenzyme dissociation

Journal

BIOCHEMISTRY
Volume 43, Issue 19, Pages 5629-5636

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi0499157

Keywords

-

Funding

  1. NCRR NIH HHS [RR-008630] Funding Source: Medline
  2. NIGMS NIH HHS [GM19301] Funding Source: Medline

Ask authors/readers for more resources

It has been widely accepted that cAMP activates the protein kinase A (PKA) holoenzyme by dissociating the regulatory and catalytic subunits, thus freeing the catalytic subunit to phosphorylate its targets. However, recent experiments suggest that cAMP does not fully dissociate the holoenzyme. Here, we investigate this mechanism further by using small-angle X-ray scattering to study, at physiological enzyme concentrations, the type Ialpha and type IIbeta holoenzyme structures under equilibrium solution conditions without any labeling of the protein subunits. We observe that while the addition of a molar excess of cAMP to the type Ialpha PKA holoenzyme causes partial dissociation, it is only upon addition of a PKA peptide substrate together with cAMP that full dissociation occurs. Similarly, addition of excess cAMP to the type IIbeta holoenzyme causes only a partial dissociation. However, while the addition of peptide substrate as well as excess cAMP causes somewhat more dissociation, a significant percentage of intact type IIbeta holoenzyme remains. These results confirm that both the type Ialpha and the type IIbeta holoenzymes are more stable in the presence of cAMP than previously thought. They also demonstrate that substrate plays a differential role in the activation of type I versus type II holoenzymes, which could explain some important functional differences between PKA isoforms. On the basis of these data and other recently published data, we propose a structural model of type I holoenzyme activation by cAMP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available