4.7 Article

Group I metabotropic glutamate receptors inhibit GABA release at interneuron-Purkinje cell synapses through endocannabinoid production

Journal

JOURNAL OF NEUROSCIENCE
Volume 24, Issue 20, Pages 4865-4874

Publisher

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0403-04.2004

Keywords

endocannabinoids; group I metabotropic glutamate receptors; 2-arachidonyl glycerol; 2-AG; GABAergic transmission; paired recordings; cerebellar Purkinje cell

Categories

Ask authors/readers for more resources

Actions of endocannabinoids in the cerebellum can be demonstrated following distinct stimulation protocols in Purkinje cells. First, depolarization-induced elevations of intracellular Ca2+ lead to the suppression of neurotransmitter release from both inhibitory and excitatory afferents. In another case, postsynaptic group I metabotropic glutamate receptors (mGluRs) trigger a strong inhibition of the glutamatergic inputs from parallel and climbing fibers. Both pathways involve endocannabinoids retrogradely acting on type 1 cannabinoid receptors (CB1Rs) at presynaptic terminals. Here, we show that group I mGluR activation also depresses GABAergic transmission at the synapses between molecular layer interneurons and Purkinje cells. Using paired recordings, we found that application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine reduced the evoked IPSCs in Purkinje cells. This effect was independent of postsynaptic Ca2+ increases and was completely blocked by a CB1R antagonist. Experiments performed with the GTP-analogues GDP-betaS and GTP-gamma provided evidence that endocannabinoids released after G-protein activation can also inhibit GABAergic inputs onto nearby, unstimulated Purkinje cells. Block of the enzymes DAG lipase or phospholipase C reduced the group I mGluR-dependent inhibition, suggesting that 2-arachidonyl glycerol could act as retrograde messenger. Finally, group I mGluR activation by brief bursts of activity of the parallel fibers induced a short-lived depression of spontaneous IPSCs via presynaptic CB1Rs. Our results reveal a mechanism with potential physiological importance, by which glutamatergic synapses induce an endocannabinoid-mediated inhibition of the GABAergic inputs onto Purkinje cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available