4.8 Article

Cycling performance of LiFePO4 cathode material for lithium secondary batteries

Journal

JOURNAL OF POWER SOURCES
Volume 132, Issue 1-2, Pages 235-239

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2003.12.058

Keywords

lithium iron phosphate; cathode material; rechargable lithium battery; cycle performance; discharge capacity

Ask authors/readers for more resources

Lithium iron phosphate (LiFePO4) cathode material has been synthesized by a solid-state reaction which uses Li3PO4 and Fe-3(PO4)(2)(.)8H(2)O as starting materials. These materials were mixed with alumina balls and treated thermally at various temperatures in an argon and hydrogen atmosphere. The crystalline intensity of LiFePO4 powder prepared at 700 degreesC is higher than that of powders prepared at 600 and 800 degreesC. The particle size increases as the heat-treatment temperature increases. The material prepared at 700 degreesC gives a higher discharge capacity than the other materials, namely, 100 mAh g(-1) at the C/5 rate, which corresponds to 0.25 mA cm(-2) and at room temperature. Although the capacity increases as the operating temperature is raised, the degree of capacity fade also increases. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available