4.6 Article

Additional disruption of the ClC-2Cl- channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 21, Pages 22276-22283

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M309899200

Keywords

-

Ask authors/readers for more resources

Cystic fibrosis is a fatal inherited disease that is caused by mutations in the gene encoding a cAMP-activated chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR). It has been suggested that the cystic fibrosis phenotype might be modulated by the presence of other Cl- channels that are co-expressed with CFTR in some epithelial cells. Because the broadly expressed plasma membrane Cl- channel, ClC-2, is present in the tissues whose function is compromised in cystic fibrosis, we generated mice with a disruption of both Cl- channel genes. No morphological changes in their intestine, lung, or pancreas, tissues affected by cystic fibrosis, were observed in these mice. The mortality was not increased over that observed with a complete lack of functional CFTR. Surprisingly, mice expressing mutant CFTR ( deletion of phenylalanine 508), survived longer when ClC-2 was disrupted additionally. Currents across colonic epithelia were investigated in Ussing chamber experiments. The disruption of ClC-2, in addition to CFTR, did not decrease Cl- secretion. Colon expressing wild-type CFTR even secreted more Cl- when ClC-2 was disrupted, although CFTR transcript levels were unchanged. It is concluded that ClC-2 is unlikely to be a candidate rescue channel in cystic fibrosis. Our data are consistent with a model in which ClC-2 is located in the basolateral membrane.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available