4.7 Article

Dynamics of DNA loop capture by the sfil restriction endonuclease on supercoiled and relaxed DNA

Journal

JOURNAL OF MOLECULAR BIOLOGY
Volume 339, Issue 1, Pages 53-66

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2004.03.046

Keywords

DNA looping; DNA-protein interaction; DNA supercoiling; restriction enzyme; transient kinetics

Funding

  1. NIGMS NIH HHS [GM 54215] Funding Source: Medline

Ask authors/readers for more resources

The SfiI endonuclease is a prototype for DNA looping. It binds two copies of its recognition sequence and, if Mg(2+) is present, cuts both concertedly. Looping was examined here on supercoiled and relaxed forms of a 5.5 kb plasmid with three SfiI sites: sites 1 and 2 were separated by 0.4 kb, and sites 2 and 3 by 2.0 kb. SfiI converted this plasmid directly to the products cut at all three sites, though DNA species cleaved at one or two sites were of formed transiently during a burst phase. The burst revealed three sets of doubly cut products, corresponding to the three possible pairings of sites. The equilibrium distribution between the different loops was evaluated from the burst phases of reactions initiated by adding MgCl(2), to SfiI bound to the plasmid. The short loop was favored over the longer loops, particularly on supercoiled DNA. The relative rates for loop capture were assessed after adding SfiI to solutions containing the plasmid and MgCl(2). On both supercoiled and relaxed DNA, the rate of loop capture across 0.4 kb was only marginally faster than over 2.0 kb or 2.4 kb. The relative strengths and rates of looping were compared to computer simulations of conformational fluctuations in DNA. The simulations concurred broadly with the experimental data, though they predicted that increasing site separations should cause a shallower decline in the equilibrium constants than was observed but a slightly steeper decline in the rates for loop capture. Possible reasons for these discrepancies are discussed. (C) 2004 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available