4.6 Article

Thermal conductivity improvement of silicone elastomer with carbon nanotube loading

Journal

APPLIED PHYSICS LETTERS
Volume 84, Issue 21, Pages 4248-4250

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1756680

Keywords

-

Ask authors/readers for more resources

Unpurified carbon nanotubes were introduced to silicone elastomer to investigate their effect on the thermal conductivity. Microstructure studies by a scanning electron microscope showed that the carbon nanotubes (CNTs) can be well dispersed in the matrix by the grinding method. No notable agglomerates or phase separation between the carbon and silicone matrix were observed, and the CNTs were individually in random orientation. The thermal conductivities of the composites were measured with the ASTM (American Society of Testing Materials) D5470 method. The thermal conductivities kappa were found to increase with the carbon amount. There was a 65% enhancement in kappa with 3.8 wt % CNT loading. The enhancement by equal loading of carbon black was found to be a little lower than that by the CNT loading. The composites loaded with CNTs displayed an abrupt increase in the electrical conductivity. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available