4.6 Article

Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes

Journal

LANGMUIR
Volume 20, Issue 11, Pages 4696-4702

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la049817m

Keywords

-

Ask authors/readers for more resources

Silicalite-1 powders with crystal sizes ranging from 20 to 1000 nm were synthesized by systematically varying synthesis gel composition, pressure, temperature, and time duration. These samples were characterized by powder X-ray diffraction, scanning electron microscopy, nitrogen adsorption isotherms, solid-state nuclear magnetic resonance, and toluene adsorption. The effect of crystal size on the physical properties of crystals is observed, including a large increase of both total and external surface area when crystal size decreases. The relationship between particle size and external surface area was modeled by assuming a cubic crystal geometry. The nanosized silicalite samples with crystal sizes less than 100 nm have a higher adsorption capacity for toluene, showing promising potential for its application in volatile organic compound removal.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available