4.6 Article

Polypeptide multilayer films: Role of molecular structure and charge

Journal

LANGMUIR
Volume 20, Issue 11, Pages 4540-4547

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la036330p

Keywords

-

Ask authors/readers for more resources

The role of molecular structure, charge, and hydrophobicity in polyelectrolyte layer-by-layer assembly (LbL) of thin films has been studied using the model polypeptides poly-L-glutamatic acid (PLGA) and poly-L-lysine (PLL), quartz crystal microbalance (QCM), and circular dichroism spectroscopy (CD). The adsorption behavior of PLGA and PLL has been compared with the structure of these molecules in aqueous solution under the same conditions. The data show that the deposition of polypeptide per adsorption step scales with average secondary structure content, whether alpha helix or beta sheet. This is contrary to the expectation based on the view that hydrogen bonds are crucial to polypeptide film assembly, because secondary structure formation in a polypeptide reduces its intermolecular hydrogen-bonding potential. The data also show that polypeptide adsorption scales with ionic strength and chain length. Taken together, the results increase knowledge of polypeptide-based LbL thin film fabrication and will help to provide a firmer foundation for the use of natural or designed polypeptides in LbL.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available