4.7 Article

On-line monitoring of batch processes using multiway independent component analysis

Journal

CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS
Volume 71, Issue 2, Pages 151-163

Publisher

ELSEVIER
DOI: 10.1016/j.chemolab.2004.02.002

Keywords

fault detection and diagnosis; multiway independent component analysis (MICA); multiway principal component analysis (MPCA); on-line batch process monitoring

Ask authors/readers for more resources

Batch processes play an important role in the production of low-volume, high-value products such as polymers, pharmaceuticals, and biochemical products. Multiway principal component analysis (MPCA), a multivariate projection method, has been widely used to monitor batch processes. But in-control data of non-stationary processes in fact contain inherent non-Gaussian distributed data due to ramp changes, step changes. and even weak levels of autocorrelation. Monitoring charts obtained by applying MPCA to such non-Gaussian data may contain nonrandom patterns corresponding to the data characteristics. To obtain better monitoring performance in a batch process with non-Gaussian data, on-line batch monitoring method with multiway independent component analysis (MICA) is developed in this paper. MICA is based on a recently developed feature extraction method, called independent component analysis (ICA), whereas PCA looks for Gaussian components. whereas ICA searches for non-Gaussian components. MICA projects the multivariate data into a low-dimensional space defined by independent components (ICs). When the measured variables have non-Guassian distributions, MICA provides more meaningful statistical analysis and on-line monitoring compared to MPCA because MICA assumes that the latent variables are not Gaussian distributed. The proposed method was applied to the on-line monitoring of a fed-batch penicillin production. The simulation results demonstrate the power and advantages of MICA. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available